
HABILITATION THESIS

Marek Cúth
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1 Preface
This thesis presents the following eight recent papers coauthored by Marek Cúth:

[A] M. Cúth, M. Doucha: Lipschitz-Free Spaces Over Ultrametric Spaces,
Mediterr. J. Math., 13 (2016), 1893-1906, doi: 10.1007/s00009-015-0566-7.

[B] M. Cúth, M. Doucha, P. Wojtaszczyk: On the structure of Lipschitz-
free spaces, Proc. Amer. Math. Soc., 144 (9) (2016), 3833–3846, doi:
10.1090/proc/13019.

[C] M. Cúth, M. Johanis: Isometric embedding of ℓ1 into Lipschitz-free spaces
and ℓ∞ into their duals, Proc. Amer. Math. Soc., 145 (8) (2017), 3409-
3421, doi: 10.1090/proc/13590.

[D] M. Cúth, O. F. K. Kalenda, P. Kaplický: Isometric representation of
Lipschitz-free spaces over convex domains in finite-dimensional spaces,
Mathematika, 63 (2) (2017), 538–552, doi: 10.1112/S0025579317000031.

[E] M. Cúth, O. F. K. Kalenda, P. Kaplický: Finitely additive measures and
complementability of Lipschitz-free spaces, Israel J. Math., 230 (1) (2019),
409–442, doi: 10.1007/s11856-019-1829-y.

[F] L. Candido, M. Cúth, M. Doucha: Isomorphisms between spaces of Lips-
chitz functions, J. Funct. Anal., 277 (8) (2019), 2697—2727,
doi: 10.1016/j.jfa.2019.02.003.

[G] F. Albiac, J. L. Ansorena, M. Cúth, M. Doucha: Lipschitz free p-spaces for
0 < p < 1, accepted in Israel J. Math.

[H] F. Albiac, J. L. Ansorena, M. Cúth, M. Doucha: Embeddability of ℓp and
bases in Lipschitz free p-spaces for 0 < p ≤ 1, J. Funct. Anal., in press,
doi: 10.1016/j.jfa.2019.108354.

Papers [A-H] are related to the study of Banach space theoretical properties
of “Lipschitz-free Banach spaces”. In the first chapter (Introduction) we motivate
our research from a personal perspective, we give some basic definitions of the
notions we work with and we mention several related areas of mathematics where
those or similar classes of spaces are investigated. In the second chapter (Presen-
tation of the included papers) we try to briefly explain the main outcomes of the
papers listed above. Reprints of [A-H] are contained in Appendices.
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2 Introduction
All of the papers included in this thesis are related to the study of Banach space
theoretical properties of “Lipschitz-free Banach spaces”. This class of spaces (or a
class of very similar objects) was naturally considered in various areas of research
and so we may find different notions describing the same (or very similar) object
across more (or sometimes even within one) research fields.1 In this thesis we use
the term “Lipschitz-free” which is due to Godefroy and Kalton [15] and which
is frequently used in the community of researchers working in the Banach space
theory. Other terms used in Banach space theory for the same object are e.g.
“Arens-Eells spaces”, “free Banach spaces” or “transportation cost spaces”.

In this introductory chapter we try to motivate the study of Banach space
theoretical properties of Lipschitz-free Banach spaces from the point of view of
non-linear geometry of Banach spaces, we give basic definitions of the objects we
work with, most importantly we define Lipschitz-free Banach spaces and mention
their crucial properties for non-linear geometry of Banach spaces. Finally, we
mention several objects with different names (coming often from different areas
of mathematics) which are either isometric or very close to Lipschitz-free Banach
spaces.

2.1 Motivation for non-linear geometry of Banach spaces
Any Banach space X is also a metric space. The principal question of the non-
linear geometry of Banach spaces is to find out how much the metric structure of
the Banach space X determines its linear structure. One of the first results in the
area is the Mazur-Ulam theorem from 1932 [32], by which two Banach spaces are
linearly isometric if and only if they are isometric as metric spaces. On the other
hand, solving an open problem of Fréchet from 1928, Kadec proved in 1967 [21]
that every two separable infinite-dimensional Banach spaces are topologically
homeomorphic. Toruńczyk completed Kadec’s result in 1981 by proving that ev-
ery two infinite-dimensional Banach spaces of the same densities are topologically
homeomorphic [38].

One of the natural questions which emerged was, what happens if two Ba-
nach spaces are Lipschitz-isomorphic (that is, there exists bi-Lipschitz bijection
between them). In other words, if X is a Banach space with a property (P ) and
Y is Banach space which is Lipschitz-isomorphic to X, does Y have the property
(P ) as well? In 1978, Aharoni and Lindenstrauss [1] found a nonseparable Ba-
nach space (the space JL∞) which is not determined by its Lipschitz structure
because it is Lipschitz-isomorphic to c0 ⊕ (JL∞/c0) but it is not linearly isomor-
phic to this space. However, an example of a separable Banach space X which
is not determined by its Lipschitz structure is not known. This seems to be one
of the most important open problems in non-linear geometry of Banach spaces,
see e.g. [3, Problem 14.3.1]. It is known that spaces X = c0, X = ℓp and X = Lp

for 1 < p < ∞ are determined by their Lipschitz structure, but even for classical
spaces like X = ℓ1, X = C[0, 1] or X = L1 it is not known whether there exists
a Banach space which is Lipschitz-isomorphic but not linearly isomorphic to X,
see e.g. the survey [16].

1This issue is explained in a greater detail in Section 2.3
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In the seminal paper by Godefroy and Kalton [15], the authors considered a
construction which assigns to a metric space M a Banach F(M), called by the
authors Lipschitz-free space over M , in such a way that the linear structure of
F(M) somehow reflects the metric structure of M . Using this construction they
proved (among others) two very interesting results.

First, they proved that whenever Q : X → Y is a continuous linear map
between separable Banach spaces X and Y (e.g. if Z ⊂ X is a closed subspace,
and Q : X → X/Z is the quotient map) and f : Y → X is a C-Lipschitz map
with Q◦f = IdY then there is a linear operator T : Y → X with Q◦T = IdY and
∥T∥ ≤ C. This has two interesting consequences. The first one is that whenever
there is an isometric embedding (not necessarily a linear one) of a separable
Banach space X into a Banach space Y then X is actually linearly isometric to a
subspace of Y , see [15, Corollary 3.3]. The second one is that the strategy used
by Aharoni and Lindenstrauss in [1] to prove that JL∞ is not determined by
its Lipschitz structure cannot work for separable Banach spaces and therefore, if
one wants to construct a separable Banach space not determined by its Lipschitz
structure, he/she should come up with a completely new idea (for some details
we refer the reader to [3, pages 394-397]).

Second, the authors used Lipschitz-free spaces in order to prove that when-
ever X and Y are Lipschitz-isomorphic Banach spaces and X has the bounded
approximation property (BAP) then Y has BAP as well, see [15, Theorem 5.4].

Soon after the seminal paper by Godefroy and Kalton [15] was published, the
study of Lipschitz-free spaces from the point of view of the geometry of Banach
spaces became active field of research and many results on their Banach space
properties were published. There are still fascinating open problems in the area
whose solutions would lead to nice applications, see e.g. [16, Problem 16 and
18]. We should emphasize that even though Lipschitz-free spaces form a class of
spaces which is not very difficult to define, the structure of those spaces is still very
mysterious, which is witnessed e.g. by the fact that it is not even known whether
F(R2) is linearly isomorphic to F(R3). Thus, our understanding of those spaces
is far from being satisfactory and there are up to now many papers containing
various new structural results. Some of those are mentioned in the next chapter,
where we present the content of the papers included in this thesis.

Finally, let us emphasize here that even though we mentioned the paper by
Godefroy and Kalton [15] above as the main motivation for the study of Lipschitz
free spaces from the point of view of non-linear geometry of Banach spaces, those
spaces were essentially known many years before under different names and vari-
ous interesting results were proved about them. We refer the reader to Section 2.3
where this is explained in a greater detail.

2.2 Basic definitions
Let us give some basic definitions and observations which more-or-less follow the
approach from Section 1 in [B], where we refer the interested reader for the proofs
which are considered nowadays as folklore (however they are rather easy). For
some basics one may also consult the monograph by Weaver [43].

Let (M, d, 0) be a pointed metric space, that is a metric space with a distin-
guished “base point” denoted by 0. Consider the space Lip0(M) of all real-valued
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Lipschitz functions that map 0 ∈ M to 0 ∈ R. It has a vector space structure
and the minimal Lipschitz constant of f ∈ Lip0(M) given by

∥f∥Lip := sup
{︃ |f(x) − f(y)|

d(x, y) : x ̸= y ∈ M
}︃

gives rise to a norm on Lip0(M). Then
(︂

Lip0(M), ∥ · ∥Lip
)︂

is a Banach space.
For any x ∈ M we denote by δx ∈ Lip0(M)∗ the evaluation functional, that is,

δx(f) = f(x) for every f ∈ Lip0(M). Denote by F(M) the closure of the linear
span of {δx : x ∈ M} with the dual space norm denoted simply by ∥ · ∥. It is easy
to see that ∥δx − δy∥ = d(x, y) for any x, y ∈ M . This means that M can be
considered as a metric subspace of F(M) via the isometric embedding x ↦→ δx.

The space F(M) is in the non-linear geometry of Banach spaces usually called
Lipschitz-free space over M and it is uniquely characterized by the following
universal property.

Proposition 1 (Universal property). Let (M, d, 0) be a pointed metric space.
Then F(M) is the unique (up to isometry) Banach space such that there is an
isometry δ : M → F(M) such that

(i) δ(M \ {0}) is linearly independent, and

(ii) for every Banach space Z and for every f ∈ Lip0(M, Z) there exists a linear
operator Tf ∈ L(F(M), Z) satisfying Tf ◦ δ = f and ∥Tf∥ = ∥f∥Lip.

Using this universal property of F(M) for Z = R it can be rather easily
shown that F(M)∗ is linearly isometric to Lip0(M). Further, it is easy to observe
that it does not matter how the point 0 ∈ M is chosen as the corresponding
Lipschitz-free spaces F(M) are isometric.

Lipschitz free spaces provide a canonical linearization process of Lipschitz
maps between metric spaces: if we identify (through the map δ) a metric space
M with a subset of F(M), then any Lipschitz map from a metric space M to
a metric space N which maps 0 to 0 extends to a continuous linear map from
F(M) to F(N). That is, for any f : M → N with f(0) = 0 there exists a linear
operator Tf : F(M) → F(N) such that ∥Tf∥ = ∥f∥Lip and the following diagram
commutes:

M N

F(M) F(N)

δM

f

Tf

δN

It is not very difficult to show there are two formulas for the computation
of the norm of an element from the canonical countable dense subset. More
precisely, given µ = ∑︁n

i=1 aiδxi
∈ span{δx : x ∈ M} ⊂ F(M), we have

∥µ∥F(M) = sup
{︃⃓⃓⃓ n∑︂

i=1
aif(xi)

⃓⃓⃓
: f ∈ Lip0(M), ∥f∥Lip ≤ 1

}︃

= inf
{︃ m∑︂

j=1
|bj|d(yj, zj) : µ =

m∑︂
j=1

bj(δyj
− δzj

)
}︃

.

(1)
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Now, one may observe that if N is a subspace of a metric space M , then
the linear map given by F(N) ∋ δx ↦→ δx ∈ F(M), x ∈ N extends to a linear
isometric embedding of F(N) into F(M).

Using those observations we can see that the metric structure of M corre-
sponds to the linear structure of F(M). For example, if N is bi-Lipschitz equiv-
alent (resp. isometric) to a subset of M , then F(N) is linearly isomorphic (resp.
linearly isometric) to a subspace of F(M).

Let us finish this section by an example of an application, which demon-
strates the usefulness of Lipschitz-free spaces in the non-linear geometry of Ba-
nach spaces. By [15, Theorem 5.3], a Banach space X has the bounded approx-
imation property (BAP) if and only if F(X) has BAP. A consequence of this
result is that BAP is determined by the Lipchitz structure of a Banach space.
Indeed, if X has BAP and it is Lipschitz-isomorphic to Y , then F(X) has BAP
and it is linearly isomorphic to F(Y ), so F(Y ) has BAP which implies that Y
has BAP as well.

2.3 Relations to other fields of mathematics
Lipschitz-free spaces are quite natural objects from different perspectives, so it is
probably not so big surprise that objects either identical or very close to Lipschitz-
free spaces were considered in more areas of mathematics and they were also given
different names. Let us describe what is known to us in a greater detail, we refer
the interested reader to [41, pages 106-111] and [34, Section 1.6] for some more
comments and details concerning historical and terminological remarks.

Let us start with some historical comments concerning the construction pro-
vided in Section 2.2. Essentially the same construction has been used already in
1985 by Kadec [22] where the author did not give it a specific name, later in 1986
by Pestov [37] where the author called those spaces free Banach spaces and proved
those spaces are characterized by the universal property (see Proposition 1) and
finally in 2003 by Godefroy and Kalton [15] where the authors called those spaces
Lipschitz-free spaces.

2.3.1 Arens-Eells spaces

Another name under which Lipschitz-free space is well-known among researchers
working in the Banach space theory is the Arens-Eells space, which is the object
considered by Weaver in his monograph [42]. It is easy to see that Lipschitz-free
space and Arens-Eells space are naturally isometric as Banach spaces. Let us give
some more details.

Let (M, d) be a metric space. In 1956 Arens and Eells [5] considered the
vector space Mol(M) of all the molecules, that is, finitely supported functions
m : M → R satisfying ∑︁

x∈M m(x) = 0 endowed with the pseudonorm given by

∥m∥Æ := inf
{︃ n∑︂

j=1
|aj|d(xj, yj) : m =

n∑︂
j=1

aj(χxj
− χyj

)
}︃

, m ∈ Mol(M),

where for any x ∈ X, the symbol χx stands for the characteristic function of the
singleton set {x}. They observed that (Mol(M), ∥ · ∥Æ) is a normed linear space
and that M isometrically embeds onto a closed subset of Mol(M).
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In his monograph from 1999 Weaver [42] considered the space Æ(M) which is
the completion of (Mol(M), ∥ · ∥Æ) and he named Æ(M) the Arens-Eells space.
From the formula (1) it easily follows that given a base point 0 ∈ M , the mapping
Æ(M) ∋ χx − χ0 ↦→ δx ∈ F(M), x ∈ M extends to the linear isometry between
Æ(M) and F(M).

Let us note that all the basic properties of Lipschitz-free spaces (equivalently,
Arens-Eells spaces) mentioned in Section 2.2 were known to Weaver as well.
Detailed proofs are contained in his monograph [42].

There is a natural interpretation of a molecule m ∈ Mol(M): m(x) > 0
means that m(x) units of a certain product are stored at point x; m(x) < 0
means that −m(x) units of the same product are needed at x. With this in
mind, m ∈ Mol(M) may be regarded as a transportation problem. If (aj)n

j=1,
(xj)n

j=1 and (yj)n
j=1 are such that m = ∑︁n

j=1 aj(χxj
− χyj

), then we may interpret
it as a plan to solve the transportation problem by delivering aj units from the
point xj to the point yj for every j, the cost of this transportation plan being∑︁n

j=1 |aj|d(xj, yj). The norm ∥m∥Æ is then interpreted as the minimal possible
cost of solving our transportation problem m. This is why the space Æ(M) is
also sometimes called the transportation cost space, see e.g. [34].

2.3.2 Wasserstein distance and Wasserstein spaces

Wasserstein distance (or Vasershtein which is the original spelling) is usually
though of as a distance between certain probability Borel measures on Polish
metric spaces. It is known also as Kantorovich–Rubinstein distance, optimal trans-
portation cost or Earth Mover’s distance. It is very questionable what the right
notion for this distance should be and who should be attributed for its discovery
as it has been discovered and rediscovered by several authors (see [41, pages 106-
107] for details). There are also several motivations, one of the most popular ones
is to find an optimal solution for various transportation problems, see [40, Intro-
duction].

As mentioned above, the theory is usually developed for Polish metric spaces,
see e.g. [40, Section 7.1], but it is possible to generalize the corresponding notions
and obtain similar results also for general metric spaces. Let us present the basic
notions and results as they are described in [12].

Let (X, d) denote a non-empty metric space, M(X) be the space of real Radon
measures on X and M+(X) the set of all the non-negative measures belonging
to M(X). Note that in the literature the authors usually restrict to the situation
when (X, d) is separable and complete in which case the class of Radon measures
coincides with Borel measures of finite variation, see [7, Theorem 7.1.7]. Denote
by M+

d (X) the set of all µ ∈ M+(X) such that for some (and thus for any)
x0 ∈ X we have ∫︂

d(x, x0) dµ(x) < +∞

and by Md(X) the set of all µ ∈ M(X) such that its total variation |µ| belongs
to M+

d (X). Of course, if d is bounded then Md(X) = M(X) and M+
d (X) =

M+(X). Given µ, ν ∈ M+(X) with µ(X) = ν(X) we denote by

Π(µ, ν) := {π ∈ M+(X × X) : µ(A) = π(A × X) and ν(A) = π(X × A)
for every A ⊂ X Borel}
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the set of all Radon couplings of µ and ν. Given µ, ν ∈ M+(X) with µ(X) = ν(X)
the Wasserstein distance between µ and ν is defined as

W1(µ, ν) := inf
{︃ ∫︂

X×X
d(x, y) dπ(x, y) : π ∈ Π(µ, ν)

}︃
. (2)

By the result of Kellerer, see [28, Theorem 1] or a more elementary proof by
Edwards [12, Theorem 4.1], the infimum in (2) is attained and we have

W1(µ, ν) = sup
{︃ ∫︂

X
f dµ −

∫︂
X

f dν : f ∈ Lip(X), ∥f∥Lip ≤ 1
}︃

. (3)

It is now rather straightforward to prove that the set of probability measures
from M+

d (X) endowed with the distance function W1 forms a metric space, see
e.g. [12, Theorem 4.4]. This metric space is usually called the Wasserstein space,
see e.g. [41, Definition 6.4].

The relation with Lipschitz-free spaces is the following. Let us denote by
M0

d(X) the vector space of all µ ∈ Md(X) with µ(X) = 0 and put

∥µ∥W := W1(µ+, µ−), µ ∈ M0
d(X).

Then (M0
d(X), ∥ · ∥W ) is a normed linear space, see [12, Theorem 4.5]. By (3),

for any base point 0 ∈ X and any µ ∈ M0
d(X) we have

∥µ∥W = sup
{︃ ∫︂

X
f dµ : f ∈ Lip0(X), ∥f∥Lip ≤ 1

}︃
and so, the mapping M0

d(X) ∋ µ ↦→ Tµ ∈ Lip0(X)∗ is isometry where

Tµ(f) =
∫︂

X
f dµ, f ∈ Lip0(X).

Moreover, finitely supported measures are dense in M0
d(X), see [12, Theorem 6.1],

so the completion of (M0
d(X), ∥ · ∥W ) is linearly isometric to the Lipschitz-free

space F(X).
Let us conclude this section by mentioning that several authors have pub-

lished their opinion on the right terminology. The term Wasserstein distance
and Wasserstein space mentioned above was chosen by Villani [41], Vershik [39]
provides some reasons for using the notion of Kantorovich metric, Weaver in [43,
page 125] defends the notion of Arens-Eells space and Ostrovskii with Ostrovska
in [34, Section 1.6] give reasons to use the term transportation cost space.
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3 Presentation of the included papers
This chapter is devoted to a brief summary of the results included in Appendices,
where research articles of the author are presented. We tried to pick the parts
which we find the most interesting ones with no attempt to give a complete
description of all the papers included. Since some of our ideas from various
papers are naturally interconnected, we decided to group our outcomes into three
sections according to the topic they cover rather than presenting each one of the
papers individually. We hope this will be profitable for the reader as he/she will
be able to see more complete picture of what is un/known in the area.

For Banach spaces X and Y , we write X ≃ Y , X ↪→ Y and X
c

↪→ Y if X is
linearly isomorphic to Y , X is linearly isomorphic to a subspace of Y and X is
linearly isomorphic to a complemented subspace of Y , respectively.

3.1 Lipschitz free Banach spaces and their ℓ1-like behaviour
Soon after the seminal paper by Godefroy and Kalton [15] was published, re-
searchers realized that Lipschitz-free spaces in many respects behave like the
space ℓ1. As an example we may mention two results by Kalton: F(M) isomor-
phically embeds into an infinite ℓ1-sum of spaces isomorphic to ℓ1 whenever M is
a uniformly discrete space (see [24, Proposition 4.3]); ℓ1(ω1) ↪→ F(M) whenever
M is a non-separable metric space (see [25, Theorem 2.1]).

One more recent example is the result by Dalet [9] who proved, among other
things, that the Lipschitz-free space over a separable proper ultrametric space
has the metric approximation property, is isomorphic to ℓ1 and is isometric to a
dual space. We improved with Doucha [A] two of the above-mentioned results.

Theorem 2 ([A, Theorems 1 and 2]). The Lipschitz-free space over a separable
infinite ultrametric space is isomorphic to ℓ1 and has a monotone Schauder basis.

Given a separable infinite ultrametric space M , we may ask what is the Banach-
Mazur distance between F(M) and ℓ1. Dalet, Kaufmann and Procházka [10]
proved that F(M) is not isometric to ℓ1. However, in a joint work with Albiac,
Ansorena and Doucha [H, Proposition 4.5] we proved that the Banach-Mazur
distance between F(M) and ℓ1 may be arbitrary close to 1. Since every separa-
ble uniformly disconnected metric space is Lipschitz-equivalent to an ultrametric
space, we repeated in [A] the question of Godefroy whether F(K) has BAP for ev-
ery totally disconnected compact metric space K. This was answered in negative
by Hájek, Lancien and Pernecká [18].

Another class of metric spaces M for which the space F(M) has quite a lot
of common with the space ℓ1 are countable compacta. By a result of Dalet [8],
F(K) is a dual space with MAP whenever K is a countable compact metric
space. However, with Doucha and Wojtaszczyk [B, Theorem 1.2 an Remark
4.5] we proved there exists a sequence (xn) in [0, 1]2 with xn → (0, 0) such that
F({xn : n ∈ N} ∪ {(0, 0)}) does not bi-Lipschitz embed into L1.

Another direction of research related to the ℓ1-like behaviour of Lipschitz-free
spaces was initiated in a joint work with Doucha and Wojtaszczyk [B], where we
investigated the structure of a general infinite-dimensional Lipschitz-free space.
We proved the following.
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Theorem 3 ([B, Theorem 1.1]). Let M be an infinite metric space. For the
Banach space X = F(M), we have ℓ1

c
↪→ X. From this we get:

• X∗ is not separable.

• X is not isomorphic to a complemented subspace of a C(K) space.

• X is not L∞ space.

This result was noticed by some researchers and cited several times. On the
other hand, as we have later found out, the proof is actually quite easy using
some classical known facts. Indeed, using [6, Theorem 4] it suffices to show that
ℓ∞ ↪→ X∗ = Lip0(M). Now, picking an infinite disjoint family of non-empty
balls in M it is not difficult to construct a sequence of 1-Lipschitz functions
(with supports in the balls) equivalent to the ℓ∞-basis. This was pointed out
in [19] where the authors generalized our result and proved that ℓ1(κ) c

↪→ F(M)
whenever κ ≥ ω is the density of the metric space M .

However, our method of the proof of Theorem 3 did not use that much the
structure of the dual X∗ (see [B, Remark 3.3]) and this enabled us to go further.
In [C] we obtained with Johanis the following improvement.

Theorem 4 ([C, Theorem 5]). Let M be an infinite metric space. Then Lip0(M)
contains a subspace isometric to ℓ∞. If moreover the completion of M has an
accumulation point or contains an infinite ultrametric space, then F(M) contains
a 1-complemented subspace isometric to ℓ1.

In [C] we also formulated the open problem of whether ℓ1 embeds isometrically
into any infinite-dimensional Lipschitz-free space. This was recently answered
in negative by Ostrovska and Ostrovskii [34] and even more recently a charac-
terization of metric spaces M for which ℓ1 embeds isometrically into F(M) was
given by the same authors in [35]. Another related recent direction of research is
the one from [29] where Khan, Mim and Ostrovskii considered finite-dimensional
versions, for example they proved that whenever a metric space M contains 2n
points then F(M) contains a 1-complemented subspace isometric to ℓn

1 .
With Albiac, Ansorena and Doucha [H] we revisited Theorem 3 once more,

because we wanted to prove its analogy for “Lipschitz-free p-spaces” (see Sec-
tion 3.3). This resulted in two more generalizations in the setting of classi-
cal Lipschitz-free spaces. First, we proved that ℓ1(κ) is 3-isomorphic to a 3-
complemented subspace of F(M) whenever κ ≥ ω is the density of M (the
number 3 is not so important, but the interesting fact is that it does not de-
pend on the metric space M , for a more precise and more general statement see
Theorem 11 below). Second, we proved the following result.

Theorem 5 ([H, Theorem 3.2]). Let M be an infinite metric space. Then there
exists N ⊂ M such that F(N) is isomorphic to ℓ1 and the canonical copy of
F(N) in F(M) is complemented in F(M).

A natural way of a related possible further research is for example to find out
for which nonseparable metric spaces M the space ℓ1(dens M) is isometric to a
1-complemented subspace of F(M) [H, Question 5.2] or to consider the question
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of whether F(K) is isomorphic to a dual Banach space whenever K is totally
disconnected compact metric space [A, Question 1].

Probably the most important question in this area is whether F(M) has BAP
whenever M is a uniformly discrete metric space since both positive and negative
answer to this question would have interesting applications, see [16, Problem 18].

3.2 Structure of F(Rd)
Even though it is not difficult to give a definition of a Lipschitz-free space and
even though there is an intensive and on-going research concerning their Banach
space theoretical properties, we are still far from understanding the structure of
those spaces. For example, it is not even known whether F(R2) is isomorphic to
F(R3).

It is easy to see that the mapping Lip0(R) ∋ f ↦→ f ′ ∈ L∞(R) is isometry
between Lip0(R) and L∞(R) which is known to be a space with isometrically
unique predual. Thus, F(R) is isometric to L1(R). On the other hand, using
the result of Naor and Schechtman [33], F(R2) does not bi-Lipschitz embed into
L1(R). Thus, at least we know that F(R2) is not isomorphic to F(R).

The study of Banach space theoretical properties of Lipschitz-free spaces over
subsets of Rd, d ∈ N was given a big attention. Let us summarize some of the
most important structural results which were known up to 2015 (more recent
contributions are mentioned in the subsequent text).

(i) L1 ↪→ F(M) whenever [0, 1] bi-Lipschitz embeds into M (easy because
F([0, 1]) is isometric to L1[0, 1]).

(ii) For a metric space M , F(M) isometrically embeds into L1 if and only if M
isometrically embeds into an R-tree (see [14]).

(iii) F(M) has BAP for every M ⊂ Rd, d ∈ N. Moreover, if M is compact and
convex or M = Rd, then F(M) has MAP with respect to any norm on Rd

(see [15, 30,36]).

(iv) F(Rd) has a Schauder basis for every d ∈ N. This basis is even monotone
if we endow Rd with the ℓ1-norm (see [20]).

(v) F(M) is linearly isomorphic to F(Rd) which is linearly isomorphic to its
ℓ1-sum whenever M ⊂ Rd has a non-empty interior (see [27]).

In [D] with Kalenda and Kaplický we gave an explicit isometric representation
of F(M), where M is a non-empty convex subset in a finite-dimensional normed
space.

Theorem 6 ([D, Theorem 1.1]). Let E be a real normed space of dimension
d ∈ N and M ⊂ E be a nonempty convex open subset. Then the Lipschitz-free
space F(M) is canonically isometric to the quotient space

L1(M, E)/{g ∈ L1(M, E) : div g = 0 in the sense of distributions on Rd}.
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This result was in part motivated by a result of Lerner who proved that Lip0(Rd) is
isometric to the dual of the space described above (his preprint was later included
in the paper [17]), but at the time it was not known whether F(Rd) is the unique
predual of Lip0(Rd) so we had not only to prove that the duals are isometric but
we were also led to find out what the mapping δ : M → F(M) is transferred
to. Later, Weaver [44] proved that F(M) is the isometrically unique predual of
Lip0(M) whenever M is bounded or metrically convex so at least for M = Rd

we can deduce Theorem 6 from the results by Lerner and Weaver mentioned
above. A similar characterization of the space F(Rd) was also independently
given in [13]. As we have learned out later on, similar ideas as we used in our
paper [D] were used also in [31] in order to characterize Sobolev spaces W −1,1

which later motivated us in our work with Albiac, Ansorena and Doucha [H] to
prove that Sobolev spaces W −1,1 are actually isometric to certain Lipschitz-free
spaces, see [H, Theorem 2.11].

Once we had in hand the isometric characterization of the space F(Rd), in
a joint work with Kalenda and Kaplický [E] we were able to come up with the
following result.

Theorem 7 ([E, Theorem 1.1]). Let E be a normed space of a finite dimension
d ≥ 2. Then there is a linear projection Q : F(E)∗∗ → F(E) such that ∥Q∥ ≤
dBM(E, ℓ2

d), where dBM denotes the Banach-Mazur distance.

One of the motivations for the result above was [16, Problem 16] asking whether
F(ℓ1) is complemented in its bidual. This problem is of particular interest, be-
cause a positive answer would solve a famous open problem of whether every
Banach space which is Lipschitz-isomorphic to ℓ1 is actually linearly isomorphic
to ℓ1, see [16, comment after Problem 16]. Natural open problems are e.g. whether
there exists C > 0 such that F(E) is C-complemented in F(E)∗∗ for every finite-
dimensional Banach space E or whether F(ℓ2) is complemented in its bidual, see
[E, Questions 1.4 and 1.6].

Concerning the problem of whether F(R2) is isomorphic to F(R3) we were
thinking about an isomorphisms between the duals and in a joint work with
Candido and Doucha [F] we proved the following.

Theorem 8 ([F, Theorem 1.16]). Lip0(Rd) ≃ Lip0(Zd) for every d ∈ N.

On the other hand, F(Zd) is not isomorphic to F(Rd) (for example, because
L1 ↪→ F(Rd) but F(Zd) is a dual space by the result of Dalet [8]). Thus, one
possible way of seeing this result is that it generalizes the known fact that L∞ is
linearly isomorphic to ℓ∞ while L1 is not isomorphic to ℓ1, which corresponds to
the case of d = 1 in Theorem 8.

Moreover, our tools developed in order to prove Theorem 8 had much greater
applicability. First, we obtained certain results for “non-commutative finite-
dimensional spaces” - in this direction an example of our result is that for quite
a general class C of Carnot groups (for details see [F, Theorem 2.2]) whenever M
is a member of C and N ⊂ M is a net in M (that is, uniformly discrete subset
which is ε-dense in M for some ε > 0) then Lip0(M) ≃ Lip0(N). Next, we con-
sidered infinite-dimensional Banach spaces. In this direction we proved e.g. that
Lip0(Lp) is isomorphic to Lip0(ℓp) or that Lip0(X) c

↪→ Lip0(NX) whenever NX is
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a net in a Banach space X which is isomorphic to X ⊕ X and has a Schauder
basis, see [F, Section 3] for more details and more results.

Natural open problems in this area of research are for example the following
ones. Is Lip0(X) isomorphic to Lip0(NX) whenever NX is a net in a separable
Banach space X? Is it true that F(Lp) ≃ F(ℓp) for every (some) 1 ≤ p < ∞?
We refer the reader to [F, Section 4] for those and some more natural questions.

3.3 Lipschitz-free p-spaces
Classes of metric and Banach spaces have natural generalizations.

Fix 0 < p ≤ 1. We say that (M, d) is a p-metric space if (M, dp) is a metric
space. A p-Banach space is a vector space X endowed a function ∥ · ∥ : X → R
which satisfies all of the axioms of the norm except that the triangle inequality
is replaced by

∥x + y∥p ≤ ∥x∥p + ∥y∥p, x, y ∈ X, (4)
such that (X, ∥ · ∥) is complete (that is, when X is endowed with the metric
(x, y) ↦→ ∥x − y∥p, it is a complete metric space). Of course, the case of p = 1
corresponds to the classical notion of a metric space and a Banach space. Let us
note that, by the Aoki-Rolewicz theorem, the condition (4) is satisfied if and only
if we have ∥x + y∥ ≤ C(∥x∥ + ∥y∥) for some 0 < C ≤ 21/p (see e.g. [26, Theorem
1.3]) which is the reason why p-Banach spaces are sometimes given the name of
quasi-Banach spaces.

It is safe to say that most of the research in functional analysis is done in
the framework of Banach spaces (that is, for the case when p = 1) and that
the study of the more general case of quasi-Banach spaces has lagged far behind
despite the fact that the first papers in the subject appeared in the early 1940’s,
see e.g. [4, 11]. One of the reasons is that for a quasi-Banach space X it might
happen that for its dual X∗ we have X∗ = {0} (which is the case e.g. for spaces
Lp[0, 1] with 0 < p < 1) and so working with them requires doing without one
of the most powerful tools in Banach spaces: the Hahn-Banach theorem and
the duality techniques that rely on it. The reasons which could motivate one to
accept the challenge and try to obtain results for the (more demanding) case of
a quasi-Banach space are for example the following:

• some people did it and obtained nice results (see e.g. [23]);

• proving new results in p-Banach spaces for 0 < p < 1 often provides an al-
ternative proof even for p = 1 and, hopefully, the new techniques developed
could give us new observations also for p = 1;

• there are many examples of natural quasi-Banach spaces such as the se-
quence spaces ℓp, the function spaces Lp, the Hardy spaces Hp, the Lorentz
sequence spaces d(w, p), etc.

Similarly as in the setting of metric and Banach spaces, one may consider
similar objects to Lipschitz-free Banach spaces in the setting of p-metric and
p-Banach spaces for 0 < p ≤ 1. We have the following analogy to Proposition 1.
Proposition 9 (Universal property). Let 0 < p ≤ 1 and (M, d, 0) be a pointed p-
metric space. Then there exists a unique (up to isometry) p-Banach space Fp(M)
such that there is an isometry δ : M → Fp(M) such that
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(i) δ(M \ {0}) is linearly independent, and

(ii) for every p-Banach space Z and for every f ∈ Lip0(M, Z) there exists a
linear operator Tf ∈ L(Fp(M), Z) satisfying Tf ◦ δ = f and ∥Tf∥ = ∥f∥Lip.

Lipschitz free p-spaces were introduced in [2] with the sole instrumental pur-
pose to build examples for each 0 < p < 1 of two separable p-Banach spaces
which are Lipschitz-isomorphic but fail to be linearly isomorphic. Whether this
is possible or not for p = 1 remains as of today the single most important open
problem in the theory of non-linear classification of Banach spaces. However,
even though Lipschitz free p-spaces were proved to be of substantial utility in
functional analysis, the structure of those spaces has not been investigated un-
til our joint paper with Albiac, Ansorena and Doucha [G] appeared, where we
initiated the study of the structure of this new class of p-Banach spaces.

In [G] we started with some basic observations and proved that all of the
basic properties of Lipschitz-free spaces mentioned in Section 2.2 above have
their analogies for Lipschitz-free spaces with 0 < p ≤ 1 except for the property
that F(N) is canonically isometric to the subspace of F(M) whenever N is a
subspace of a metric space M .

Theorem 10 ([G, Theorem 6.1]). For each 0 < p < 1 and p ≤ q ≤ 1 there
is a q-metric space (M, d) and a subset N ⊂ M such that the inclusion map
ȷ : N → M induces a non-isometric isomorphic embedding Lȷ : Fp(N) → Fp(M)
with ∥L−1

ȷ ∥ ≥ 21/q.

It seems to be an important problem whether the canonical mapping Lȷ from the
theorem above must be always an isomorphism, see [G, Question 6.2].

On the other hand, not everything is lost. For example, in [G] we proved that
whenever M is an infinite separable ultrametric space then Fp(M) is linearly
isomorphic to ℓp for every 0 < p ≤ 1 which generalizes Theorem 2.

In [H] we continued in our joint work with Albiac, Ansorena and Doucha. In
an analogy to Theorem 7 we proved that, for every 0 < p ≤ 1, ℓp isomorphi-
cally embeds into every infinite-dimensional Lipschitz-free p-space (consequently,
Lipschitz-free p-space is not a q-Banach space for q < p). Moreover, we proved
the following.

Theorem 11 ([H, Theorem 3.1]). Let p ∈ (0, 1]. Suppose that (M, d) is either

(a) a metric space, or

(b) a p-metric space containing dens M-many isolated points.

Then for every C > 21/p, ℓp(dens M) is C-complemented in Fp(M).

Note that in general it is not true that, given 0 < p < 1, ℓp
c

↪→ Fp(M) whenever
M is a p-metric space as witnessed e.g. by the fact that ℓp (whose dual is ℓ∞) is
not complemented in Lp[0, 1] (which is a Lipschitz-free p-space by [G, Theorem
4.13]) since Lp[0, 1]∗ = {0}. Let us emphasize that this time our alternative proof
for the case of 0 < p < 1 actually led us to new results even for the classical case
of p = 1, see e.g. Theorem 5 above.

Moreover, in [H] we described the kernel of a projection in a Lipschitz-free
p-space induced by a Lipschitz retraction. This result seems to be new even for
the classical case of p = 1.
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Theorem 12 ([H, Theorem 2.13]). Let (M, d) be a pointed p-metric space, 0 <
p ≤ 1, and N ⊆ M be a Lipschitz retract. Then

Fp(M) ≃ Fp(N) ⊕ Fp(M/N),

where M/N denotes the quotient of M by N , that is, M/N = ((M \ N) ∪
{0}, dM/N) where

dM/N(x, y) := min{d(x, y), (dp(x, N) + dp(y, N))1/p}, x, y ∈ (M \ N) ∪ {0}.

Another result from [H] which is worth mentioning is that Fp([0, 1]) admits
a Schauder basis for every 0 < p ≤ 1. The importance of this result is that
it provides up to our knowledge first known examples of p-Banach spaces for
p < 1 with a basis which do not have an unconditional basis and are not a trivial
modification/deformation of a Banach space such as L1 ⊕ ℓp, thus reinforcing the
theoretical usefulness of Lipschitz free p-spaces for p < 1.

Let finish this section by mentioning that this work is still in progress and with
Albiac, Ansorena and Doucha we have several unpublished results concerning
Lipschitz-free p-spaces (some of which are new even for the case of p = 1) which
are very likely to be written carefully down and published later.
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